Introduction to Formal Verification

Aniello Murano

Universita degli studi di Napoli “Federico IT"
Dipartimento di Scienze Fisiche
Sezione di Informatica

22 Maggio, 2006

Is the system correct?

Design Complexity

transistors

Pentiumn 4 Processor, 100,000,000
\ Pentium® IIl Processer,
MOORE'S LAW
Pentium® I Processor, 10,000,000
Pantium® Processor,

486™ DX Processor

-~ | 1,000,000
100,000

& 1 10,000

g T

- ol ! A 1 1000
1970 1975 1980 1985 1990 1995 2000

Exponential Growth — doubling of transistors every couple of years 3

Measuring SW Complexity
O Source Lines of Code (SLOC)

@ Measures how many lines (statements) in a program
@ Useful as a measure of software complexity

QO SOME SLOC Estimates:

NASA Space Shuttle flight Control 420 thousand (shuttle) + 1.4 million (ground)
Sun Solaris (1999-2000) 7-8 Million

Microsoft Windows 3.1 (1992) 3 Million

Microsoft Windows 95 15 Million

Microsoft Windows 98 18 Million

Microsoft Windows 2000 20 Million

Microsoft Windows XP (2002) 40 Million

Red Hat Linux 6.2 (2000) 20 Million

Red Hat Linux 7.1 (2001) 30 Million

Sources: D. Wheeler, “More Than A Gigabuck: Estimating GNU/Linux’s Size”, hitp://www.dewheeler.com/sloc/; Wikipedia (wikipedia.org)

System Failure

Q Safety . ;@f

0 Money) Notable examples of
system failure

:
o7
Gir

0 System Release %‘

0 Market reputation

2
s

In December 1996, the Ariane 5
rocket exploded 40 seconds after
take off.

Cost : $400 million software
failure

Mars, December 3, 1999
Crashed due to uninitialized
variable

Pentium 4 Bugs Breakdown
QIntel Pentium chip, released in 1994 produced error in
floating point division

QCost : $475 million

Un-analyzed bugs, 24%

ate definition, 3% |

Random initialization, 3%

Cormplety, 4%

N
Dcusnentation, 4%

Powar down issues, 6%

Logic changes. &%

Hindows
icept ion
0]

06 has occured at 0028 DC in WD DiskTSD(03) +
This was called from 0028
nt inue,

art your computer.
in all applications,
Press any k

to continue

You will

O Therac-25 Accident :

< Cost: Human Loss.

< A software failure caused
wrong dosages of x-rays.

10

Checking System Correctness

0 Interactive theorem proving: Formulate system correctness as a
theorem in a suitable logic
® Requires manual proofs

® May require to test several cases
Q Testing: Run the system on select inputs

® May require to test a large amount of data

® Used only at an advanced phase of a project

12

Another Approach: Formal verification

OFormal Verification:
& System -> A mathematical model M
@ Desired behavior > A formal specification y
@ Correctness > A formal technique to check that M meets y

OAdvantages:

@ Apply o system models

@ Using them at a very early stage of a project

@ Based on robust mathematical theories

@ System analysis relies on the solution of some decision problems:
% Reachability
% Automata emptiness and containment
% Satisfiability of logic formulas
% Model checking
% Module checking and games 13

Outline of the talk

0 Model Checking
Discrete System Model
@ Temporal logics (LTL, CTL, CTL*)

Q Satisfiability of temporal logic formulas

0 Automata-theoretic approach to solve the model
checking and the satisfiability problems

Q Automata on infinite objects

0 Module checking
@ Discrete Module
Temporal logics

14

Model Checking

Q Let S be a finite-state system and P its desired behavior

US > labelled state-transition graph (automaton) M
apP > a temporal logic formula v

O O

(OX©]
(o)
The system has
the required
behavior

M satisfies v

An example

> A scheduler should be designed so that jobs of two users are not
printed simultaneously, and whenever a user sends a job, the job is
printed eventually.

O Build a mathematical model of the system:
4 what are possible behaviors?

O Write correctness requirements in a specification language:
@ what are desirable behaviors?

O Model Checking: (Automatically) check that the model satisfies the
specification
16

An Automata-theoretic Approach to
System Verification [Vardi and Wolper]

Q Let A describe the system S

O Let y describe the specification of S and ||

B_, accept the computations that violate y

Q S is correct with respect to y if

L(A) N L(B,) = 0

O What we need ? Z
® Efficient system specification 5
& Efficient automata closed under intersection
& Efficiently decidable emptiness problem

Decision Problems in Formal Verification

SYSTEM MODEL

‘ Automata on
infinite objects
REQUIREMENTS

Automata
Temporal Logic,
Real time temporal logic

SYSTEM VERIFIER

Model-checking
Games - Module Checking
Satisfiability

]

[Automata-theoretic]

Approach

18

Finite Automata on Finite Words
a

A=<Z,Q, Q8 F> \b

with FEQ a

Q A run r of A on a finite words o is a finite sequence
of states.

Q A accepts a word o if there exists arunr of Aono
ending in a final state.

O A accepts the language of the regular expression
¢ + (a+b)*a

Finite Automata on Infinite Words
a

A:<Z,Q,Qo:5:F>\ b

a

Q F may (or may not) be a subset of Q
Q A run r on an w-word ¢ is an w-sequence of states.

O A run r is accepting if the states occurring infinitely
many times in r (Inf(r)) satisfies F.

0 @ Biichi condition: F is a set of final states (FEQ) and a run is
accepting if Inf(r) N F # &. As a Buchi automaton, A accepts
the w-language (b*a)”.

20

0
v
Iﬁ * Automata on Infinite Trees

Q A infinite (binary) tree is a functiont: {0,1}* ==
Q Elements in {0,1}* are nodes

O Empty word g is the root

Tree Automata

UA=<X,Q,Qp.8,F>
+ & - Transition relation on trees
* F - Acceptance condition.

also a tree where labels are elements of %
Q in accordance with & and the root is
labelled with an initial state.

O A run of a free automata over a tree is .. ’\‘é

Example.

N
8(q0.0)={(91.95). (92.94)} él;j(

A AR R

a tree t arun r(t)
QO A tree t is accepted by A if there exists a run r(t) of A

on t such that all paths w of r(t) “infinitely often”
satisfy F

0 L(A) : Language accepted by A 23

Temporal Logic

SYSTEM MODEL [SYSTEM ANALYSIS
@ ez

Timed Automata Model-checking

Games - Module Checking
Satisfiability

REQUIREMENTS

Automata
Temporal logic /
Real time temporal logic

24

Temporal Logic

QCorrectness requirements for open (reactive)
systems

OMostly used:

@LTL (Linear Temporal Logic)
[Pnueli 1977]

@CTL (Branching Temporal Logic)
[Emerson and Clarke 1982]

@CTL* (Full Branching Temporal Logic)
[Emerson and Halpern 1986]

25

Temporal logic (LTL)

0 A logical notation that allows to:
®specify relations in time
@ conveniently express finite control properties

O Syntax
9=pl-oloVeloAe|Xe|Fp|GoploUe
Q Temporal operators

*Xp “p at the next time"
o®Fp “eventually p"
®Gp “henceforth p"
opUgq “p until q"
0 Semantics:
PUG p p p p g4
O O

Types of temporal properties

QOSafety (nothing bad happens)

G ~(ackl & ack2) “mutual exclusion”

G (req U ack) “req must hold until ack”
QOLiveness (something good happens)

G (req = F ack) "if req, eventually ack”
QFairness

GF req = GF ack “if infinitely often req,

infinitely often ack”

27

A branching time temporal logic: CTL
[Emerson and Clarke 1982]

Syntax @ :=p|=0|9V ¢[IXe | VXe |IeUg | VeUp
where p is an atomic proposition

Semantics: with respect to a 24P-labelled tree

T=3pUg
Example: 3pUq
Some abbreviations 0 p
« 3Fp=3 True U p \ / \
+ J6p=-VF-p
P P P
+ VFp= VTrue U p . : .

* V6 p= —HF—-p

28

Example: traffic light controller

QGuarantee no collisions

QOGuarantee eventual service

29

Specifications

QOSafety (no collisions)
V6 — (E_Go A (N_Go | S_Go));

OLiveness

V6 (— N_Go A N_Green = VF N_Go);
V6 (- S_Go A S_Green = VF S_Go);
V6 (— E_Go A E_Green = VF E_Go):

30

Decision problems in Temporal Logics
Satisfiability

Q Given a CTL formula ¢, is there a tree satisfying ¢ ?

Examples: p /p\
@V p U qis satisfiable N

@36(p A p) is not satisfiable

Q Given a CTL formula ¢, it is possible to build a BTA Ay (generator
for CTL) with O(2l9l) states accepting all infinite trees that
satisfy ¢ [Vardi e Wolper 1986]

Q A CTL formula ¢ is satisfiable iff L(Ag) + ®.

Q The emptiness problem for BTA is LOGSPACE-complete for
PTIME [Vardi and Wolper 1986]

0 The satisfiability problem can be solved in exponential time
31

Decision Problems Using Automata
Model Checking

U Given a system S and a specification ¢, using a tree t as
model of S, we determine whether t satisfy ¢ (t=9).

QO Automata-theoretic approach: using an automaton Ag as
model of S and an automaton A_, describing the complemen-
tation of ¢, S is correct with respect to ¢ iff

L(As) NL(A-)=

Complexity Results

Class Model Checking Satisfiability
LTL | PSpace-Complete [1] PSpace-Complete [1]
CTL Linear Time [3] EXPTime-Complete
CTL* [PSpace-Complete [2] | 2EXPTime-Complete [45]
1. [Sistla and Clarke 1984] 4. [Emerson, Sistla 1984]
2. [Emerson and Lei 1985] 5. [Emerson and Jutla 1988]
3. [Clarke, Emerson, and Sistla 1986]

33

