
1

1

Introduction to Formal Verification

Aniello Murano

Università degli studi di Napoli “Federico II”
Dipartimento di Scienze Fisiche

Sezione di Informatica

22 Maggio, 2006

2

Is the system correct?

3

Design Complexity

Exponential Growth – doubling of transistors every couple of years 4

Measuring SW Complexity
Source Lines of Code (SLOC)

Measures how many lines (statements) in a program
Useful as a measure of software complexity

SOME SLOC Estimates:

Sources: D. Wheeler, “More Than A Gigabuck: Estimating GNU/Linux’s Size”, http://www.dewheeler.com/sloc/; Wikipedia (wikipedia.org).

NASA Space Shuttle flight Control 420 thousand (shuttle) + 1.4 million (ground)

Sun Solaris (1999-2000) 7-8 Million

Microsoft Windows 3.1 (1992) 3 Million

Microsoft Windows 95 15 Million

Microsoft Windows 98 18 Million

Microsoft Windows 2000 20 Million

Microsoft Windows XP (2002) 40 Million

Red Hat Linux 6.2 (2000) 20 Million

Red Hat Linux 7.1 (2001) 30 Million

2

5

System Failure

Safety

Money

System Release

Market reputation
6

Notable examples of
system failure

7

In December 1996, the Ariane 5
rocket exploded 40 seconds after
take off.

Cost : $400 million software
failure

8

Mars, December 3, 1999
Crashed due to uninitialized
variable

3

9

Pentium 4 Bugs Breakdown
Intel Pentium chip, released in 1994 produced error in

floating point division

Cost : $475 million

10

Therac-25 Accident :
A software failure caused
wrong dosages of x-rays.
Cost: Human Loss.

11

Systems are Unreliable
12

Checking System Correctness
Interactive theorem proving: Formulate system correctness as a
theorem in a suitable logic

Requires manual proofs

May require to test several cases

Testing: Run the system on select inputs

May require to test a large amount of data

Used only at an advanced phase of a project

4

13

Another Approach: Formal verification

Formal Verification:
System A mathematical model M
Desired behavior A formal specification ψ
Correctness A formal technique to check that M meets ψ

Advantages:
Apply to system models
Using them at a very early stage of a project
Based on robust mathematical theories
System analysis relies on the solution of some decision problems:

Reachability
Automata emptiness and containment
Satisfiability of logic formulas
Model checking
Module checking and games 14

Outline of the talk

Model Checking
Discrete System Model
Temporal logics (LTL, CTL, CTL*)

Satisfiability of temporal logic formulas
Automata-theoretic approach to solve the model
checking and the satisfiability problems
Automata on infinite objects
Module checking

Discrete Module
Temporal logics

15

Model Checking
Let S be a finite-state system and P its desired behavior

S labelled state-transition graph (automaton) M
P a temporal logic formula ψ

The system has
the required

behavior

M satisfies ψ

16

An example
A scheduler should be designed so that jobs of two users are not
printed simultaneously, and whenever a user sends a job, the job is
printed eventually.

Build a mathematical model of the system:
what are possible behaviors?

Write correctness requirements in a specification language:
what are desirable behaviors?

Model Checking: (Automatically) check that the model satisfies the
specification

5

17

An Automata-theoretic Approach to
System Verification [Vardi and Wolper]
Let A describe the system S
Let ψ describe the specification of S and
B¬ψ accept the computations that violate ψ
S is correct with respect to ψ if

What we need ?
Efficient system specification Efficient system specification
Efficient automata closed under intersectionEfficient automata closed under intersection
Efficiently decidable emptiness problemEfficiently decidable emptiness problem

L(A) ∩ L(B¬ψ) = ∅

18

SYSTEM MODEL

REQUIREMENTS

SYSTEM VERIFIER

Model-checking
Games – Module Checking

SatisfiabilityAutomata
Temporal Logic,

Real time temporal logic

Discrete Automata
Timed Automata
Automata on

infinite objects
Automata on Automata on

infinite objectsinfinite objects

Decision Problems in Formal Verification

Automata-theoretic
Approach

N
o

Y
e
s

19

Finite Automata on Finite Words

q1 q2

a

a

b
b

A = < Σ, Q, Q0, δ, F >
with F⊆Q

A run r of A on a finite words σ is a finite sequence
of states.
A accepts a word σ if there exists a run r of A on σ
ending in a final state.
A accepts the language of the regular expression
ε + (a+b)*a

20

Finite Automata on Infinite Words

q1 q2

a

a

b b

F may (or may not) be a subset of Q
A run r on an ω-word σ is an ω-sequence of states.
A run r is accepting if the states occurring infinitely
many times in r (Inf(r)) satisfies F.

Büchi condition: F is a set of final states (F⊆Q) and a run is
accepting if Inf(r) ∩ F ≠ ∅. As a Buchi automaton, A accepts
the ω-language (b*a)ω.

A = < Σ, Q, Q0, δ, F >

6

21

Automata on Infinite Trees

A infinite (binary) tree is a function t t : {0,1}* : {0,1}* ⃗⃗ ΣΣ

Elements in {0,1}*{0,1}* are nodesnodes

Empty word εε is the rootroot

a

00 01

a b

b a 10 11

22

Tree Automata

A runrun of a tree automata over a tree is
also a tree where labels are elements of elements of
QQ in accordance with δδ and the root is
labelled with an initial stateinitial state.

A=< Σ , Q , Q0 , δ , F >
• δ - Transition relation on trees
• F - Acceptance condition.

23

Example.
δ(q0,a)={(q1,q3), (q2,q4)}

a

q1 q3

q0

A tree t is accepted by A if there exists a run r(t) of A
on t such that all paths π of r(t) “infinitely often”
satisfy F

L(A) : Language accepted by A

q2 q4

a tree t a run r(t)

24

Temporal LogicTemporal Logic

SYSTEM MODEL

REQUIREMENTS

SYSTEM ANALYSIS

Model-checking
Games – Module Checking

Satisfiability
Automata

Temporal Logic,
Real time temporal logic

Discrete Automata
Timed Automata

Temporal logicTemporal logicTemporal logic

Discrete AutomataDiscrete AutomataDiscrete Automata√

7

25

Temporal Logic

Correctness requirements for open (reactive)
systems

Mostly used:
LTL LTL (Linear Temporal Logic)
[Pnueli 1977]
CTLCTL (Branching Temporal Logic)
[Emerson and Clarke 1982]
CTL*CTL* (Full Branching Temporal Logic)
[Emerson and Halpern 1986]

26

Temporal logic (LTL)
A logical notation that allows to:

specify relations in time
conveniently express finite control properties

Syntax
ϕ := p | ¬ ϕ| ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | Fϕ | Gϕ | ϕ U ϕ

Temporal operators
X p “p at the next time”
F p “eventually p”
G p “henceforth p”
p U q “p until q”

Semantics:

Xp: pGp: p p p ppp U q: p p p qp

27

Types of temporal properties
Safety (nothing bad happens)

G ~(ack1 & ack2) “mutual exclusion”
G (req U ack) “req must hold until ack”

Liveness (something good happens)
G (req ⇒ F ack) “if req, eventually ack”

Fairness
GF req ⇒ GF ack “if infinitely often req,

infinitely often ack”

28

A branching time temporal logic: CTL
[Emerson and Clarke 1982]

Syntax ϕ := p | ¬ϕ | ϕ ⋁ ϕ | ∃Xϕ | ∀Xϕ | ∃ϕUϕ | ∀ϕUϕ

where p is an atomic proposition

Semantics: with respect to a 2AP-labelled tree

Example: ∃ p U q

p

p

p pp

p

q

p

p

q

Some abbreviations
• ∃Fp = ∃ True U p
• ∃G p = ¬∀F¬p
• ∀Fp= ∀True U p
• ∀G p= ¬∃F¬p

T⊨ ∃ p U q

8

29

Example: traffic light controller

Guarantee no collisions

Guarantee eventual service

E

S

N

30

Specifications

Safety (no collisions)
∀G ¬ (E_Go ∧ (N_Go | S_Go));

Liveness
∀G (¬ N_Go ∧ N_Green ⇒ ∀F N_Go);
∀G (¬ S_Go ∧ S_Green ⇒ ∀F S_Go);
∀G (¬ E_Go ∧ E_Green ⇒ ∀F E_Go);

31

Decision problems in Temporal Logics
SatisfiabilitySatisfiability

Given a CTL formula φ, is there a tree satisfying φ ?
Examples:

∀ p U q is satisfiable

∃G(p ⋀ ¬p) is not satisfiable

p

q

p q

Given a CTL formula φ, it is possible to build a BTA Aφ (generator
for CTL) with O(2|φ|) states accepting all infinite trees that
satisfy φ [Vardi e Wolper 1986]
A CTL formula φ is satisfiable iff L(Aφ) ≠ Φ.

The emptiness problememptiness problem for BTABTA is LOGSPACELOGSPACE--completecomplete for
PTIMEPTIME [Vardi and Wolper 1986]
The satisfiability problem can be solved in exponential time

32

Decision Problems Using Automata
Model CheckingModel Checking

Given a system S and a specification φ, using a tree t as
model of S, we determine whether t satisfy φ (t⊨φ).
Automata-theoretic approach: using an automaton AS as
model of S and an automaton A¬φ describing the complemen-
tation of φ, S is correct with respect to φ iff

L(AS) ∩ L(A¬φ) = Φ

9

33

Complexity Results

2EXPTime-Complete [4,5]PSpace-Complete [2]CTL*

EXPTime-CompleteLinear Time [3]CTL

PSpace-Complete [1]PSpace-Complete [1]LTL

SatisfiabilityModel CheckingClass

1. [Sistla and Clarke 1984]

2. [Emerson and Lei 1985]

3. [Clarke, Emerson, and Sistla 1986]

4. [Emerson, Sistla 1984]

5. [Emerson and Jutla 1988]

